Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 354: 33-43, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757175

RESUMO

Epidemiological studies show strong associations between fine particulate matter (PM2.5) air pollution and adverse pulmonary effects. In the present study, wintertime PM2.5 samples were collected from three geographically similar regions-Sacramento, California, USA; Jinan, Shandong, China; and Taiyuan, Shanxi, China-and extracted to form PMCA, PMSD, and PMSX, respectively, for comparison in a BALB/c mouse model. Each of four groups was oropharyngeally administered Milli-Q water vehicle control (50 µL) or one type of PM extract (20 µg/50 µL) five times over two weeks. Mice were necropsied on post-exposure days 1, 2, and 4 and examined using bronchoalveolar lavage (BAL), histopathology, and assessments of cytokine/chemokine mRNA and protein expression. Chemical analysis demonstrated all three extracts contained black carbon, but PMSX contained more sulfates and polycyclic aromatic hydrocarbons (PAHs) associated with significantly greater neutrophil numbers and greater alveolar/bronchiolar inflammation on post-exposure days 1 and 4. On day 4, PMSX-exposed mice also exhibited significant increases in interleukin-1 beta, tumor necrosis factor-alpha, and chemokine C-X-C motif ligands-3 and -5 mRNA, and monocyte chemoattractant protein-1 protein. These combined findings suggest greater sulfate and PAH content contributed to a more intense and progressive inflammatory response with repeated PMSX compared to PMCA or PMSD exposure.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Geografia , Exposição por Inalação/efeitos adversos , Pneumopatias/induzido quimicamente , Pneumopatias/fisiopatologia , Material Particulado/efeitos adversos , Estações do Ano , Animais , California , China , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
2.
PLoS One ; 13(1): e0189175, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29385136

RESUMO

This study combines Ordinary Kriging, odor monitoring, and wind direction data to demonstrate how these elements can be applied to identify the source of an industrial odor. The specific case study used as an example of how to address this issue was the University Park neighborhood of Portland, Oregon (USA) where residents frequently complain about industrial odors, and suspect the main source to be a nearby Daimler Trucks North America LLC manufacturing plant. We collected 19,665 odor observations plus 105,120 wind measurements, using an automated weather station to measure winds in the area at five-minute intervals, logging continuously from December 2014 through November 2015, while we also measured odors at 19 locations, three times per day, using methods from the American Society of the International Association for Testing and Materials. Our results quantify how winds vary with season and time of day when industrial odors were observed versus when they were not observed, while also mapping spatiotemporal patterns in these odors using Ordinary Kriging. Our analyses show that industrial odors were detected most frequently to the northwest of the Daimler plant, mostly when winds blew from the southeast, suggesting Daimler's facility is a likely source for much of this odor.


Assuntos
Monitoramento Ambiental/métodos , Indústrias , Odorantes , Vento , Oregon , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...